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Abstract. The complexion of the electromagnetic field arising in the context of duality 
rotations is extended to general gauge fields. There are two complexions generally. For 
non-Abelian gauge fields, a new gauge-invariant Lorentz scalar property described by a 
non-Abelian complexion is obtained. 

1. Introduction 

Many years ago, Misner and Wheeler discussed a significant Lorentz-invariant scalar 
property of the electromagnetic field [l]. This property is described by an angle, called 
the complexion, which measures the ratio of the Lagrangian density and the 
pseudocharge of the electromagnetic field. Although a given electromagnetic field F,,, 
uniquely determines the energy-momentum tensor density T,,,, one can reconstruct 
the EM field from a given energy-momentum tensor TWy only up to a duality rotation 
(for the meaning of this term, see § 3 below). The additional information needed is 
the complexion, which fixes the duality rotation and hence the exact EM field F,,,. 
This enables a complete solution of the theory to be obtained for the case in which 
the electromagnetic field is coupled to gravity. 

In this paper we explore a similar property for the general gauge field, and discuss 
its meaning for a theory in which the general (non-Abelian) gauge field is coupled to 
gravity. In 0 2 we discuss the general properties of 4 x 4 antisymmetric matrices and 
give a short proof of a property of the EM field. This property plays a crucial role in 
the ‘already unified theory’. Then we turn to general gauge fields in 0 3 and find that 
besides the Abelian complexion similar to that obtained by Misner and Wheeler, there 
is a new non-Abelian complexion which is particular to non-Abelian gauge fields. One 
can use it to characterise whether the gauge field is Abelian or not. The final section 
is a short discussion. Our conclusion is that the theory of a non-Abelian gauge field 
coupled to gravity is unlikely to be soluble. 

2. General properties of antisymmetric matrices. 

Let us firstly discuss some general properties of any 4 x 4 antisymmetric matrix. These 
properties shall be used later. The field strength F t y  in a gauge field theory is a set 
of antisymmetric tensors. Here we shall treat them in matrix form and define a matrix 
F a  with elements 

( F a ) , ,  = Ft”. (1) 
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Fa is a 4 x 4 antisymmetric matrix. From this matrix one can define a Euclidean dual 
matrix 6" and a Minkowskian dual matrix *Fa, with elements, respectively, 

(2) 
( F a ) * v  = fE,",pF:p 

( * F " ) ~ "  = $ i E p , , p ~ z p  =iF;,,. 

Fa = Fa *(*Fa)  = -Fa. (3) 

Obviously we have the properties 
.. - 

Since we are going to discuss duality, it is convenient to expand the matrix F a  over 
a set of base matrices which are 'eigenmatrices of duality'. The well defined Dirac y 
matrices are also 4 x 4 matrices, and among them six matrices can be made antisym- 
metric. Verifying the duality property, we find they can be divided into two groups 

t;= -Y,= YSYlC  

s: = i Y s Y 4 = i Y 5 Y * C  

6; = iy,y, = iy5C 

6: = i y5 yz  = - iy5y4c. 
(4) 

61 = y1= YSY3C 

[ := iC=iy2y4  
They are all purely imaginary, antisymmetric, Hermitian, self-inverse (their square is 
the unit matrix) and traceless 

- (:&=t: t:*= 1 Tr t:=O i = 1 , 2 , 3  r = l , l .  ( 5 )  
The remarkable thing is that they are really 'eigenmatrices' of duality: 

.. - - 
5: = r.5 r = 1 , 1  1 = -1. ( 6 )  

Besides, these matrices possess very nice commutation and anticommutation relations 

(7) 

Here there is no summation over r on the right-hand side of the equations. r:" are 
symmetric matrices, traceless and self-inverse, 

The notation r' means the transpose of r. 

['$:, 5:1=2i6rs&i1k51, 

{t:, g}=26rs66,+26rT$? 

Tr r:;;') = o (r:,;i))2 = 1. (8) (r:,;i))t = r:,;?) r:;;f) = r j , , r )  

From (8) we get the important property of 6:  
Tr 6:s; = 46"6,,. (9) 

Expanding Fa over t:, we have 
Fa = FP'tL 
FP,. = a Tr (Fa,$) 

For the dual field *Fa, the expansion is 
*Fa  = irFP*'t;. 

We see from this equation that the duality operation is a sort of reflection. 
In Minkowski space we choose the elements to be 

E" = -iFa 14 BP = $E,,kFPk (12) 

F:'=+(EP +irBp) (13)  

then the expansion coefficients are 

which is a familiar combination. 
The 6: matrices turn out to be what 't Hooft called 77 symbols [2] which are very 

useful in constructing the instanton solutions and can be introduced in another way [3]. 
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Using (7) and ( lo ) ,  one can easily prove the following identities valid for any 4 X 4 
antisymmetric matrices: 

F a F b  - * F b * F a  = j T r  ( F a F b )  = - f T r ( * F a * F b )  

(15) 

Tr ( F 2 )  = -Tr ( * F ) *  (16) 

F* F = a Tr ( F *  F )  (17) 

[ F " ,  F b ] =  - [ * F a , * F b ]  (18) 

[ F ,  * F ]  = 0 .  (19) 

(14) 

F a  * F b  + Fb* F a  = f Tr (* F a F b )  = f Tr ( F a *  F b )  

To show the identities, we have, for example, 

- * F ~ * F ~  = F ; ~ F ? ' ( ~ : ( ; +  rsgjt:) 

= ~ p ~ ' ~ , b . ~ j ( ( i - r ~ ) ~ ~ : , 5 : ] + ( i + r s ) { ~ : ,  t:}) 
= F;'F,~. ' (s '~[s: ,  5j]+srs{5:, g}) 
=2FP3'F,b,'Sr*S,, = 2 Tr ( F a F b ) .  

Similar relations can be written down for F" and Fa,  only keeping equation (2) 
in mind. For instance, equation (14) can be transformed into 

F " F b  + F b F a  = f Tr ( F a F b )  = f Tr ( F a F b ) .  (20 )  

These identities are very useful as long as we discuss the field strength as a whole. 
For example, a very important property of the energy-momentum tensor of the 
electromagnetic field [ 1 1  can be simply proved, as follows. The energy-momentum 
tensor of the EM field is 

T," = F,,F", - $S,.F,,F,, (21) 

T = - F 2 + a T r F 2 =  - ( * F ) 2 - $ T r F 2 .  (22) 

or, in our matrix notation, 

The square of T is then 

T 2 = ( - F 2 + $ T r  F2)(-*F2-$Tr F 2 )  

= FF*F*F+$ Tr ( F 2 ) ( F 2  - * F 2 )  -& (Tr F2)*  

=h[(Tr  F2) '+(Tr  ( F * F ) ) ' ] .  (23) 

This equation means that the inverse of T is proportional to itself - a property playing 
a very crucial role in solving the so-called 'already unified theory' [l] .  Here we have 
proved it by using the identities (14) and (17) in equations (22) and (23) .  

3. The complexions of gauge fields 

Now we turn to the duality rotation. A duality rotation of gauge fields FZy  is a 
one-parameter global transformation 

Fa '  = F a  cos a + * F a  sin a. (24) 
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In terms of the components FY', the above transformation can be written in the 
following way: 

F ; , '  = FY' cos a + irF,"*' sin a 

= exp(ira)F?' (no sum over r) (25) 
which is a pure phase transformation, but a different duality index r corresponds to 
the opposite phase angle. 

Since *(*Fa)  = -Fa ,  from (24) we obtain the transformed *Fa '  
- Fa sin cy +*Fa  cos a. (26) *Fa '=  

If we define a two-dimensional matrix vector 

f "=(  *Fa  F a )  

then we have the transformation law forf" 

f " '=  exp(iau,)f". (28) 
This is a two-dimensional rotation, generated by the Pauli matrix u2. 

matrix U, = 1. Four independent bilinear quantities are 

Since u4 and u2 commute with u2, the I ib and I i b  are duality invariants 

The quantities I:b and 
double angle ('2a vector'): 

To construct a covariant bilinear quantity, one can use Pauli matrices and unit 

I ;b  = (f")b/J-b. (29) 

1 ; b '  = 1 ; b .  (30) I i b '  = I :b  

together form a two-dimensional vector rotating with a 

In the same spirit we can construct covariant trilinear quantities from f' and I;'. 
In this case we find that there is no invariant, but have three 'cy vectors' and one '3a 
vector'. 

The cy vectors are 

(32) 
(33) 

j o b c  = I i b f c  

~ a b c  = I;by 

Habe'= exp(icyu2)Hab'. 
The 3 a  vector is 

~ a b c  
Gabc = ( ' ) 

G ; b C  

ab I 

GYbr = ( :ib) f '  

(34) 

(35) 

(36) 

(37) Gab'' = exp(i3au,)Gah'. 
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We may continue to form higher-order duality rotation covariant quantities, for 
example quadrilinear forms and  so on, but it is not necessary because we are interested 
in determining gauge-invariant and Lorentz-invariant properties, and for this purpose 
the trilinear combination is high enough. 

To form a gauge-invariant quantity, we can employ the group unit tensor Sab and 
the structure constant fabc, multiply them by the duality rotation covariants and sum 
over the group indices (taking the trace in the group space). If we want to form Lorentz 
invariant quantities, we just take the trace in Minkowski space. Then we find that 
there are only two duality-covariant, gauge-invariant and Lorentz-invariant quantities; 
one is bilinear, the other is trilinear. 

The bilinear quantity is 

I - - Q T~ 

I, = - $  Tr 1:' =i Tr ( F a F a )  = ; ( E " .  E" - Ba . B") 
- 1 1 -  , - Tr ( F a * F a )  = E" B" 

(38) 

(39) I; = I, cos 2a - I 3  sin 2cu I :  = I, sin 2a + I3 cos 2a. 

From this we can define the first complexion of a gauge field: 

I !  = o  

The meaning of this angle a I  is that, after a duality rotation with such an  angle, the 
gauge fields become 'perpendicular each to other'. We may call a ,  the 'Abelian 
complexion' of gauge fields since it also exists in the U(1) case. 

The non-trivial trilinear gauge-invariant, Lorentz-invariant, duality-covariant quan- 
tity is, after using the formal identities of 4 x 4 antisymmetric matrices, 

G ~ = G 4 c o s 3 a + G 2 s i n 3 a  

G; = - G, sin 3 a  + G, cos 3a .  

Now we can get the second complexion a ,  which can be specified by the vanishing 
of GS: 

a2 = f tan-' ( G,/ G,) 
(43) 

Obviously, when the gauge group is Abelian, the quantities G2 and G4 no longer exist, 
so there is no such complexion. We call this angle az the 'non-Abelian complexion', 
which then sufficiently characterises the non-Abelian property of the gauge theory. 
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For a Yang-Mills field with symmetry group SU(2),fa,, = and the non-Abelian 
complexion a2 is 

As an example, we consider the Polyakov-'t Hooft monopole solution [4], for which 
the electric field E :  vanishes, but E ~ ~ ~ E , ~ ~ B P B , ~ S ~ ,  is not zero except on the boundary. 
The non-Abelian complexion angle is then 

a2= - ~ / 6 .  (45) 

4. Discussion 

In Rainich's already unified theory [ 1, 51, the electromagnetic field couples to gravity. 
Due to the crucial property (23) of the stress-energy-momentum tensor, the whole 
theory can be solved. From the Riemannian curvature tensor of the spacetime, one 
can construct the energy-momentum tensor, then take a 'Maxwell root' from the 
obtained stress tensor to get the electromagnetic field strength in the extrema1 form. 
After a duality rotation through the complexion angle, the exact electromagnetic field 
emerges. If a non-Abelian gauge field, instead of the electromagnetic field, is coupled 
to the gravity, it is unlikely that this whole theory could be solved in terms of a similar 
technique, since the energy-momentum tensor of a non-Abelian gauge field does not 
possess a property similar to (23). The fact that the non-Abelian gauge fields have at 
most two non-vanishing complexions seems to suggest that the additional information 
is not enough in order to solve the problem completely, since a non-Abelian gauge 
theory contains at least three different curvatures. 
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